MALLA REDDY ENGINEERING COLLEGE

(AUTONOMOUS)

APPLIED CHEMISTRY <u>Objective question bank for II MID exam</u> (Common for CSE, ECE and EEE branches)

MODULE-III POLYMERS AND COMPOSITES

1. The fiber obtained by the step polymerization of hexa-methylene-diamine & adipi	c aci	d
is	[]
a) Dacron b) Nylon c) Rayon d) terylene		
2. Which of the following is an elastomer	[]
a) PVC b) Nylon c) Butyl rubber d) polystyrene		
3. Co-polymerization of Isobutene and isoprene results in the formation of	[]
a) Bakelite b) BUNA-S c) Butyl rubber d) Glypta	ıl	
4. Natural rubbar is basically a polymor of	г	1
a) Chloroprene b) Propylene c) Isoprene d) Ethylene	L]
5 The following is the monomer of polystyrene	Г	1
a) Styrene b) Isoprene c) Vinyl Chloride d) Ethylene	L	J
6 The following is the monomer of Teflon	ſ	1
a) $F_2C=CF_2$ b) $H_2C=CHF$ c) $H_2C=CHCl$ d) F_2C	=CH	F
7 The following polymer has ester links in its structure	ſ	1
a) Nylon b) Bakelite c) PVC d) Terylene	L	L
8. The most commonly used reagent for vulcanization of natural rubber is	Γ	1
a) Graphite b) Sulphur c) Carbon black d) Dry ice	L	1
9 Cellulose acetate is a	ſ	1
a) Thermonlastic (b) thermosetting (c) both (d) none	L	L
a) memophastic (b) thermosetting (c) both (d) none		
10. Which one is used to make 'non-stick' cookware?	[]
a) PVC (b) polystyrene (c) poly (ethyleneterephthalate) d) polytetrafluroethyl	ene	
11. Bakelite is prepared by the condensation of:	[]
(a) Benzene and formaldehyde (b) Phenol and formaldehyde		
(c) Phenol and acetaldehyde (d) Glycerol and phthalic acid		
12. One of the important uses of Bakelite is for making:	[]
a) Cables (b) Electrical switches (c) Cloth (d) Hose pipe		
13. Buna-S is an example of synthetic rubber. In this S represents	[]
a) Silicone b) Sulpur c) Styrene d) Sodium		
14. Peptide linkage contains	[]
a)CO-OR b)COOH c)CHO d) CO-NH	F	-
15. PVC formed by	L	J

a)Addition polymerization b)condensation polymerization c)vulcanization d) none	ofthes	e
16. Conductivity of a polymer is only because of presence of	[]
a) Presence Sigma bond b) Presence of Pi bond c) a & b d) none of these		
17. Creating positive site on polymer is called	[]
a) n-doping b) oxidation c) p-doping d) reduction		
18. The only rubber that can't be vulcanized is	[]
a) Butyl rubber b) neoprene c) thiokol rubber d) isoprene		
19.An organic polymer can be converted in to conducting polymer if it has	[]
a) branched structure b)extensive conjugation in polymer c) non conjugate system d) none	
20.Nylon is a	[]
a) vinyl polymer b)polyester c) chloroprene d)polyamide		
21. Which of the following is a natural fibre	[]
a) silk b)PVC c)Thiokol rubber d) polyethylene		
22.Example for biodegradable polymer is	[]
a) polylactic acid b)polystyrene c)BUNA-S d)None		
23. Example for conducting polymer is	[]
a) PVC b) Teflon c) Polyacetylene d) None of These		
24.An example for p-dopant is	[]
a) lewis acid b) sodium napthalide c) lewis base d)benzene		
25. The polymers which can be drawn in the form of long filaments	[]
a)Conducting polymers b) biodegradable polymers c) fibres d) none of these		

Key for module-III

•																			
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
b	c	c	c	a	a	b	b	d	d	b	b	d	d	a	b	c	c	b	d

21	22	23	24	25
a	а	c	а	c

Module-IV Fuels and Combustion

Multiple choice questions

- 1. Which of the following fuel possesses
 the maximum calorific value
 [

 a.C=84%,H=6%,S=4%,O=6%
 b.C=86%,H=12%,S=1%,O=1%
 c.C=90%,H=5%,S=2%,O=3%
 d.C=95%,H=2%,S=1%,O=2%
- 2. A good fuel should possesses
 - a. High ignition temperature
 - c. high calorific value
- 3. Which of the following is true
 - a. Coke posses better strength than coal
 - b. Coke burns with a long flame.

the maximum calorific value [] b.C=86%,H=12%,S=1%,O=1% d.C=95%,H=2%,S=1%,O=2% [] b. moderate ignition temperature d. both b& c. [

]

	c. Coke burns with a short flame.	
	d. Sulphur content of coke is higher than that of coal from which it is obtained	
4.	The main constituent of natural gas is []	
	a. Carbon monoxide b. Methane c. Hydrogen d. Ethane	
5.	A knocking sound is produced in the internal combustion engine when the fuel []	
	a. Burns slowly b. Burns fast	
C	c. Contains some water d. Is contaminated with lubricant	
6.	Petrol is a mixture of	
_	a. Alkenes b. Alkanes c. Alkynes d. Aromatic hydrocarbons	
7.	Which of the following is not a fossil fuel	
0	a oil b.natural gas c. geothermal d. coal	-
8.	Moisture ,ash content, volatile matter and fixed carbon are measured for coal as part of [J
0	a Proximate analysis b. Ultimate analysis c.proximate and ultimate analysis d. None	-
9.	LPG is predominantly a mixture of propane and	
10	a.Methane b.Isopropane c. Butane d. Ethane	-
10	. Combustion of which of the following fuel requires the highest amount of excess air	
	a light diesel oil b. natural gas c.LPG d.Coal	
11.	During combustion of gaseous fuels, deficiency of air	
	a. does not affect the flame b. Increase the flame temperature	
12	Combustion reaction of fuel is	
14	a Exothermic b Endothermic c Auto catalytic d none	
13	Fuels produce energy because	
10	a their oxidation reactions are endothermic	
	b they produce large volume of gases	
	c their oxidation reactions are exothermic	
	d none of these	
14	Iso-Octane and n-heptane has assigned a rating of	
	a 0 100 $b 50 50$ $c 100 0$ $d 20 80$	
15	The heat energy released is measured with the help of	
	a. energy meter b. Thermometer c. calorimeter d. anemometer	
16	Fuels are derived as	
	a. natural and derived b. primary and secondary fuels	
	c. addition and condensation fuels d. both a &b	
17	A good fuel should have []	
	a. maximum anti knock property b. maximum knock property	
	c. minimum anti knock property d. all the above	
18	. The most impure form of coal is	
10	a. Anthracite b.Peat c. Wood d. Lignite	
19	. The caloritic value of biogas is	
	15001 1/3 105001 1/3	
	a. 1500 kcal/m ³ b. 2500 kcal/m ³	

20. The fuel which has the highest calorific value is	[]
a. wood b. petrol c. methane d. hydrogen			
21. Biogas contains	[]
a arbadiavida b mathana a athulana daaatulana			
a. carbouloxide 0.inethane c. ethylene d.acetylene	r	-	1
22. Natural fuel among the following is	l]
a. oil gas b.coke c. petrol d.coal			
23. CaCl ₂ can absorb the following	ſ	-]
a.carbondioxide b. carbonmoxide c.water d.nitrogen			
24. Compressed natural gas mainly contain	[]
a. CO b.N ₂ c.CH ₄ d.SO ₂			
25. The calorific value of a fuel is expressed as []			
$a_1 k_2 a_1/m$ $b_1 k_2 a_1/kg$ $a_2 Ca_1/am^3$ $d_1 k_2 a_1/g$			
a. K.cal/III U.K.cal/kg C. Cal/CIII U.K.cal/g	г	1	
20. All example for secondary fuel is	L]	
a.perioleum 0. Natural gas c.coke d.coal	г	1	
27. Supplie compounds from crude on is removed by treating it with	L	J	
a. NA2504 U.CuO C.NaCi d.MgO	Г	1	
26. The relation sinp between the v and LC v is $LCV = UCV \pm 0.014597$ b $LCV = UCV + 0.014597$	L]	
a. $LCV = ICV + 0.9H^{+}587$ b. $LCV = ICV + 0.9H^{+}587$ c. $HCV = ICV + 0.0H^{+}587$			
C. $HC V = LC V = 0.09H^{\circ} 387$ d. $HC V = LC V = 0.9H^{\circ} 387$	г	1	
29. Non-Combustible among the following is	L]	
a. Carbon b.Hydrogen c.Ash d.Sulphur			
30. The fuel which gives more smoke is	[]	
a.petrol b. LPG c.CNG d.Coal			
31. Cottrel's process involves removal of from crude oil	[]	
a. sulphur b.water c.carbon d.c	lirt		
32. The following is used as catalyst in fixed bed catalytic cracking is	[]	
a. silica mixed with chromium oxide b.artificial clay mixed with zit	rconi	um o	oxide
c. china clay mixed zirconium oxide d. alumina mixed with zirconi	um o	xide	;
33. Carbon chain length in gasoline is	[]	
a. C_1 - C_4 b. C_5 - C_8 c. C_{15} - C_{23} d. C_{20} above	Г	1	
a diagol oil h Karagana oil a natrol d'hybriaant oil	L	J	
25 Jacostone has an extens rating of	г	1	
55. Isolociane has an octane rating of 100 h 0 h 0 h 250 h 260	L]	
a. 100 0.0 0.30 0.80	г	1	
30. The presence of hitrogen in a coar sample is	L]	
a. desirable b. undesirable c. most desirable d.less des	irable	e	
37. The calorific value of fuel depends upon the percentage of	[]	
a.volatile matter b.ash c. fixed carbon d. moisture			
38. A good fuel should possesmoisture	[]	

a. high b. low	c. very high	d. none		
39. The calorific value of gaseous is deter	nined by		[]
a. boy's or Junker's calorimeter	b. Orsat's a	pparatus		
c. Bergius process	d. none o	of the above		
40. The calorific value of LPG is			ſ	1
	a a a a a 1 / 3		-	-
a. 27800kcal/m ³ t	. 25000kcal/m ³			
c. 29500kcal/m ³	d. 23450kcal/m ³			
41. An Example for secondary solid fuel i	3		[]
a. wood b. anthracite	: lignite	d. coke		
42. The cetane number of diesel can be im	proved by adding		[]
a. tetra ethyl lead b. ethyl	nitrate c. NaNO ₃	d. 1	HNO ₃	
43. The calorific value of diesel is			ſ	1
	1/1 1 1 0 0 0 1	1/1 1 4 0	-	-
a. 11250kcal/kg b. 11000kc	al/kg c. 11200kca	al/kg d. 10	000kca	ıl/kg
44. The percentage of carbon in anthracite	coal 1s		L	J
a. 92-95, b. 85-90 c. 60-	70 d. 1	none of these		
45. The boiling range of gasoline is			[]
a. $40 - 120^{\circ} c$ b. $120^{\circ} c$ above	re c. 180 -250 0 c	d. a	bove 4	$0^0 c$
46. Which will have higher value			[]
a. GCV b. NCV c. Bot	h are equal d. ca	nnot be predic	ted	
47. Which is the elemental analysis is			[]
a. Proximate analysis (b) ultimate	analysis (c) both of	these (d) none	e of the	se
48.Conversion of coal to coke is called		0.1 1	[]
a. Coalification b. carbonization d	bituminization d. r	ione of the abo	ove	
49. The presence of oxygen content in the	coalthe c	alorific value	L	
a. increases b.decreases c. ren	lains unchanged d. I.	ione of the abo	рve г	1
a Natural gas h CNG c Bio ga	s d both h & c		L]
a.tratulal gas 0.0100 C. DIU ga				

Key for Module-IV

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
d	d	d	b	b	d	b	a	b	d	d	а	c	c	c	d	а	c	c	d
21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	37	38	39	40
b	d	c	c	b	c	b	b	c	d	b	b	b	c	а	b	c	b	а	a

41	42	43	44	45	46	47	48	49	50
d	b	b	a	a	a	b	b	b	d

MODULE- V

Composites, Nano Chemistry and Green Chemistry		
1. In nano materials atoms/ molecules are fabricated in nano scale range	[]
a) $1 - 10 \text{ nm}$ b) $100 - 120 \text{ nm}$ c) $10 - 20 \text{ nm}$ d) $30 - 50 \text{ nm}$	-	-
2. The term NANO stands for	ſ]
a) 1 billionth of centimeter b) 1 billionth of meter	-	-
c) 1 billionth of foot d) none of these		
3. Who is the father of nano materials science	ſ	1
a) Grahambell b) Dalton c) Richard feynmen d) Newton		
4. Nano materials are classified into how many types	[]
a) 2 b) 1 c) 5 d) 3	-	-
5. Which of the following is considered as one dimensional in nano scale	[]
a) Quantum dots b) Carbon nano tubes c) Fullerenes d) Thin films		
6. In nano scale nano wires and nano tubes are	[]
a) one dimensional b) three dimensional c) two dimensional d) none of the	se	
7. Bio polymers and nano tubes comes under]]
a) one dimensional b) three dimensional c) two dimensional d) none of these	se -	-
8. The important property of nano materials which differs from other materials	[]
a) increase in surface area b) decrease in surface area	_	_
c) increase in constant size d) none of these		
9. In nano scale fullerenes are	ſ]
a) one dimensional b) three dimensional c) two dimensional d) none of these	se	-
10. The catalyst in hydrogenation of oils	ſ]
a) Raney Ni b) Rhodium hydrosols c) Palladium d) Silica	-	-
11. Which of the following nano materials show effective catalytic activity for method	enation	of
$CO + H_2$ at low temperature	[]
a) Palladium b) Silica c) MoS_2 d) Rhodium hydrosols	_	_
12. The stiffest and strongest fibers known	[]
a) fullerenes b) carbon nano tubes c) nano rods d) none of these		
13. Which of the following nano wires show Photoluminescence	[]
a) Zinc oxide b) semi conductor c) silicone d) carbon		
14. The nano tubes of MoS_2 and CoS_2 are used as	[]
a) semi conductors b) insulators c) storage device d) solid lubricants		
15. The structure of C_{60} Fullerene	[]
a) closed hollow cage b) square c) hexagon d) pentagon		
16. Among the following which method will be used for the preparation of nano mat	erials []
a) DVD b) BOD c) CVD d) BAD	_	_
17. If the surface area of nano material increases, then its catalytic activity will	[]
a) decreases b) increases c) no effect d) can't be determined		
18. C_{20} fullerenes contains	[]
a) Pentagons b) hexagons c) a & b d) heptagons	-	-
19. C_{60} fullerenes contains	[]
a) Pentagons b) hexagons c) a & b d) heptagons	_	_
20. Carbon nano tubes also called as	[]
a) Bucky ball clusters b) Bucky tubes c) solar tubes d) CVD		-
21. Who proposed green chemistry principles]]
a) Paul Anastas b) john Warner		_

c) William bent	d) a&b		
22. Synthetic methods should be designed to	o minimize incorporation of	all materials u	used in the
process in to final called	-	ſ]
a) atom economy b) prevention c)	a & b d) none of above	-	-
23. Among them which is green solvent	,	ſ]
a) benzene b) dichloro methane c	e) super critical water d)duet	rated water	-
24. The constituent in Deals - alder reaction	1	ſ	1
a) dienes b) allyl halides c) vin	yl halide d) all the above	-	-
25. For green chemistry raw material should	1 be	[]
a) non - renewable b) renewabl	e c) conventional d) econon	nical	-
26. For the green reaction Bi-products mus	t be high	[]
a) true b) false (c) No	ot applicable (d) None		
27. Which of the following reaction gives	100% atom economy	[]
a) clemmenson reduction b) elimination	reaction c) diels alder reaction	on d) aldol co	ondensation
28. The usage of Phosgene and methyl chlo	ride in the synthesis of Poly	carbonates has	s been
replaced by		[]
a) di-phenyl carbonate b) phenol – form	aldehyde c) phenyl carbona	te d) carbon d	ioxide
29. The audible frequency range of ultra	asounds	[]
a) less than 16KHZ b) greater then (or)	equal to 16 KHZ c) a&b d)ne	one of above	
30. Microwave reaction are faster than ther	mal reaction	[]
a) true b) false (c) Not applica	ble (d) None		
31. Addition reactions give		[]
a) 90% atom economy b) 75% atom econ	nomy c) 50% atom economy	d) 100% atom	n economy
32.Econoburette is developed for			
a) micro volumetric titration b)) semi-	volumetric titration c)) m	acro volumetr	nc titration
d) gravimetric titration			
33.Econoburette was designed by	1 \ • 1	[]	
a) Paul anastas	b) John warner		
c) William bent	d) Man singh		
24 Which is the nen valatile solvent		Г	1
a) Benzene b) Am	monia	L]
c) Phenol d) wat	er		
35 R4 stands for Reuse Recycle Renlen	ish Redesign	ſ	1
a) true b) fals	(c) Not applicable (d) N	I	J
36 A material which contains a mixture of	two or more micro constitue	nts which are	insoluble
& differing in composition & forming distu	not phases is called	Ints, which are]
a) Polymer b) monomer c) composite	e material d) fibre	L	J
37 The phase is continuous body constitue	nt which encloses the compo	osite & give it	its bulk
form is called]]
a) Matrix b) Dispersed phase c) particula	te d) Flakes	L	1
38. The phase is the structural constituent.	which determines the interna	l structure of c	composite
is known as]]
a) Particulate b) Dispersed phase	c) Matrix d) Whiskers	L.	1
39. The fibre obtained as continuous filame	nt by the pyrolysis in an iner	t atmosphere a	are known
as	5 15 5	· [1
a) Glass fibre b) Carbon fibre	c) Aramid fibre	d) None	_

40. The thin strong filaments or fibres several mm in length & several microns in di	iamete	er are
a) Flakes b) Aramid fibres c) Whiskers d) None]
41 Mica is an example of		1
a) Whisker b) Matrix c) Flakes d) Glass fibre		J
42. Wood & bone are example of		1
a) Particulate composite b) fibre-reinforced composite c) Natural composite d) laye	red cc	mposite
43. Silicon carbide is an example of		1
a) Matrix b) layered composite c) Whisker d) Aramid fibre		-
44. A composite made from filament, a polymeric matrix & a bonding agent is know	wn as	
[]
a) Fibre-reinforced composite b) particulate composite c) layered composite d) natu	iral co	mposite
45. The composite which forms ceramic bond with a metal is called []
a) Matrix b) cermet c) Flakes d) Whisker		
46. Plywood is an example of []
a) Fibre-reinforced composite b) layered composite c) particulate composite d) Non	ie	
47. The composite are made by dispersing particles of varying size & shape of one matrix of another material are known as	mater	ial in a
	ſ	1
a) Layered composite b) Aramid Fibre-reinforced composite c) particulate compos	ite d)	None
48. A fuel that is produced through contemporary biological process is known as	[]
a) Bio fuel b) Bio sensors c) Bio surfocant d) None		
49. Which of the following is not a characteristics of composites	[]
a) Lower specific gravity b) high thermal expansion c) thermal shock resistance d) of	corros	sion
resistance		
50. A device which uses a living organism or biological molecules, to detect the pre-	esence	of
chemicals is called	[]	
a) Bio surfactant b) Bio sensors c) Bio device d) None		
51. Which of the following is the example of particulate composite	[]
a) Laminated composite b) cermets c) Glass fibre d) Silicon carbide		
52. the amphiphilic compounds produced on living surfaces that reduce surface tens	sion 8	٢
interfacial tension between individual molecules at the surface & interface is called	L]
a) Biomass b) Bio fuel c) Bio surfactants d) Bio sensors		

Key for module – V

1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
А	В	С	D	D	С	С	А	В	В	С	В	С	D	Α
16	17	18	19	20	21	22	23	24	25	26	27	28	29	30
С	В	А	С	В	A&B	Α	С	D	В	В	C	Α	В	Α
31	32	33	34	35	36	37	38	39	40	41	42	43	44	45
D	В	D	D	В	С	А	В	В	С	С	С	С	Α	В
46	47	48	49	50	51	52								
В	С	Α	В	В	В	С]							